

Solid state investigation of mefloquine hydrochloride

A. KISS, † J. RÉPÁSI, † Z. SALAMON, † Cs. NOVÁK, *‡ G. POKOL‡ and K. TOMOR‡

†Alkaloida Chemical Company Ltd, Tiszavasvári, P.O.B. 1, H-4440 Hungary ‡Institute for General and Analytical Chemistry, Technical University of Budapest, Szt. Gellért tér 4., Budapest, H-1521 Hungary

Abstract: Mefloquine hydrochloride was crystallized under different conditions and the products were studied by thermal analysis, IR spectroscopy and X-ray diffraction. It was demonstrated that different conditions of crystallization resulted in different crystal structures. The α - and δ -modifications were hydrates, the β - and γ -forms were polymorphs, the ϵ -form was an acetone solvate and θ -mefloquine was tetrahydrofuran solvate. During long storage at room temperature, the α -, δ - and θ -forms of mefloquine hydrochloride were transformed. By heat treatment of the δ -, ϵ and θ -modifications, a new crystal structure was obtained.

Keywords: Mefloquine hydrochloride; solid-state investigation; thermal analysis; polymorphism; X-ray diffraction; IR spectroscopy.

Introduction

Mefloquine hydrochloride $(R,S-erythro-\alpha-2-piperidyl-2,8-bis(trifluoromethyl)-4-quinoline$ methanol hydrochloride) is an antimalarialdrug.

The morphology and formulation of mefloquine were considered in two patents filed by Hoffmann-La Roche.

Since the physico-chemical stability, biological utilization and therapeutic activity are strongly influenced by the crystalline form of the drug [1-4], it is of great importance to elucidate the polymorphism of this compound.

Five forms of mefloquine hydrochloride are listed in the first patent cited [5]. Form A is described as an anhydrate, B is an acetone solvate while forms C, D and E are hemihydrates. In the other patent [6] the E form of mefloquine is not mentioned. The IR spectra presented (KBr technique) cannot be assigned directly to the different modifications and the intensive carbonyl stretching vibration in the IR spectrum of the acetone solvate cannot be observed; thus the conclusions in these patents are unreliable.

By evaluation of the previous publications, it was concluded that a critical investigation of the individual forms of mefloquine hydrochloride would be important. Thermal analysis, IR spectroscopy, GC and X-ray diffraction were chosen as experimental techniques for this study. In addition the possibility of identifying the modifications of mefloquine in the final products was examined and experiments were conducted to determine if there is any chance of polymorphic transitions occurring during storage.

Experimental

The materials used were standard samples prepared by Alkaloida Ltd; their purity was tested by a HPLC method and was found to be greater than 99.8%.

The IR spectra were recorded by a Digilab FTS — 40 Fourier transform IR spectrometer with a built-in zinc selenite single reflection prismatic cell. A room temperature DTGS detector was used with a resolution of 2 cm^{-1} .

The DSC analyses were carried out in a DuPont DSC — 10 cell. Conditions: atmosphere, flowing nitrogen; heating rate, 10° C min⁻¹; sample mass, about 3 mg.

Thermogravimetric curves were recorded by a DuPont 951 thermobalance. Conditions: atmosphere, flowing argon; heating rate, 10° C min⁻¹; sample mass, about 5 mg.

A DuPont 916 TEA (Carle 3000) was used for detection of the evolved organic gases. Conditions: nitrogen flow, $1.8 \ h^{-1}$; heating rate, 8°C min⁻¹; sample mass, about 3.5 mg.

^{*} Author to whom correspondence should be addressed.

X-ray patterns were recorded with a Zeiss HZG-4 powder diffractometer. Conditions: Co tube; Fe filter; aluminium sample holder; goniometer scan-rate, 1° min⁻¹.

For the identification and quantitative determination of the organic solvates, a Hewlett–Packard model 5890 GC was used with a 1.5-m Porapack Q column. Conditions: temperature, isothermal at 150°C; flow rate of helium gas, $30 \text{ cm}^3 \text{ min}^{-1}$.

Results and Discussion

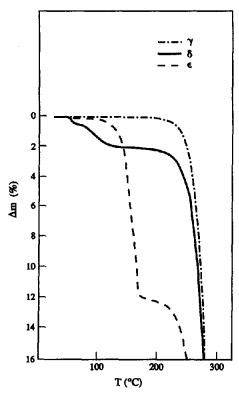
The solvates of mefloquine hydrochloride were characterized by TG and EGA curves. The weight losses calculated from the TG curves (Fig. 1) are shown in Table 1.

For the ϵ - and θ -modification, the results were in good agreement with those calculated on the basis of the GC measurements.

The EGA curves demonstrated that organic compounds are formed in the case of the ϵ - and θ -modifications. It means that α - and δ -mefloquine hydrochloride may be regarded as hydrates whereas the ϵ - and θ -modifications are organic solvates. In the case of the δ modifications, the ratio of the first and second TG steps was not uniform for different samples. To interpret this phenomenon, it is assumed that the varying amount of the water of crystallization, which is represented by the second step, is caused by the reversible transition between the anhydrate and the hydrate forms depending on the conditions of storage. The solvents used for crystallization and the products formed are summarized in Table 2.

 Table 1

 Weight loss of mefloquine hydrochloride forms


Form	α	β	γ	δ*	e	θ
Weight loss (%)	2	0	0	2	11.8	15.9

* The weight loss took place in two steps between 50 and 120° C.

Table 2

Solvents for	crystallization	and the products	s formed
		- ··· ··· ··	

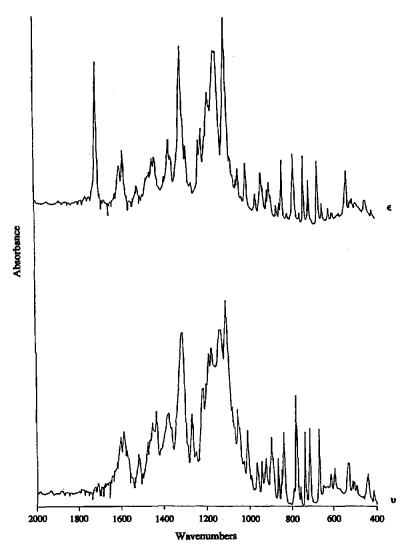

Solvent	Products			
Ethanol-water >30%	α(mefloquine HCl, 0.5 H ₂ O)			
Acetonitrile	β(polymorph modification)			
Dichloromethane, ethyl acetate	γ(polymorph modification)			
Ethanol-water <30%	δ(mefloquine HCl, × H ₂ O)			
Acetone	ε(mefloquine HCl, Me ₂ CO)			
Tetrahydrofuran	θ(mefloquine HCl, C ₄ H ₈ O)			

Figure 1

 $T\bar{G}$ curves of the γ -, δ - and ϵ -forms of mefloquine hydrochloride.

The IR spectra were determined using a reflection technique so that the application of pressure and a matrix could be avoided. The 1350-700 cm⁻¹ wave number interval proved to be the most suitable for the identification of the different modifications (Table 3). A number of differences could be observed visually as well in this region. Especially significant differences exist between 1250 and 1100 cm^{-1} and 790–770 cm⁻¹. The carbonyl stretching vibration band at 1709 cm⁻¹ for ϵ mefloquine and the C-O-C asymmetrical stretching vibrational band at 1171 cm⁻¹ for θ mefloquine hydrochloride support the hypothesis that these modifications exist in the forms of the acetone solvate and tetrahydrofuran solvate, respectively (Fig. 2).

Figure 2 IR spectra of ϵ - and θ -mefloquine hydrochloride.

From the DSC curves (Figs 3 and 4), the peak temperatures in Table 4 represent the melting transitions of the different modifications. For the α -, δ -, ϵ - and θ -forms, melting takes place in the dehydrated or desolvated structures.

The enthalpy changes associated with this transition cannot be determined because melting is accompanied by the thermal decomposition of the mefloquine hydrochloride forms.

The existence of the different forms were confirmed by the X-ray patters of the α -, β -, γ -, δ -, ϵ - and θ -forms. The *d* values and the I/I_0 relative intensities are summarized in Table 5.

The crystalline samples were stored for 9 months at room temperature for stability examination. It was found that in the α -

modification, a small amount of the δ -modification had appeared. This observation is supported by the DSC and IR measurements.

In the case of the δ -modification, new diffraction peaks appeared in the X-ray pattern representing the formation of a new modification. Accordingly, a new DSC peak was observed on the curve with the peak temperature of 263°C. In the case of θ -mefloquine hydrochloride, the 70% decrease in the tetrahydrofuran content and a DSC peak at 263°C was observed again. On the other hand, IR studies proved that the commercial products 'Lariam' (Hoffmann-LaRoche) and 'Mephaquin' (Mepha) contain the α - and δ -hydrates of mefloquine hydrochloride, respectively.

After the heat treatment of the solvates (δ -, ϵ - and θ -forms) at 167°C, X-ray diffractograms

Table 3

Characteristic infrared wave numbers of mefloquine hydrochloride forms between 1300 and 700 cm^{-1}

$\begin{array}{cc} \alpha & \beta \\ (cm^{-1}) & (cm^{-1}) \end{array}$		γ (cm ⁻¹)	δ (cm ⁻¹)	€ (cm ^{−1})	θ (cm ⁻¹)	
1311	1312	1316	1312	1313	1308	
1304	1304	1310	1306	1297	1286	
1269	1267	1296	1288	1280	1266	
1261	1261	1272	1264	1280	1239	
1212	1217	1254	1247	1213	1212	
1188	1197	1219	1217	1198	1198	
1169	1187	1199	1212	1188	1186	
1157	1171	1186	1187	1172	1171	
1137	1161	1179	1171	1146	1130	
1127	1140	1141	1162	1135	1107	
1108	1128	1136	1138	1110	1069	
1079	1108	1130	1123	1070	1054	
1054	1078	1111	1107	1054	1030	
1047	1066	1079	1077	1046	1023	
1012	1054	1067	1054	1010	1008	
966	1011	1046	1045	962	959	
941	965	1027	1008	938	941	
929	924	1008	963	924	921	
892	908	960	941	897	896	
881	898	937	924	891	887	
865	890	924	919	855	847	
839	865	906	901	849	839	
834	840	896	897	840	834	
772	835	890	865	836	778	
736	775	864	839	788	736	
729	756	839	834	779	713	
715	737	786	780	753	701	
713	719	753	737	736		
	714	736	714	720		
		709		714		

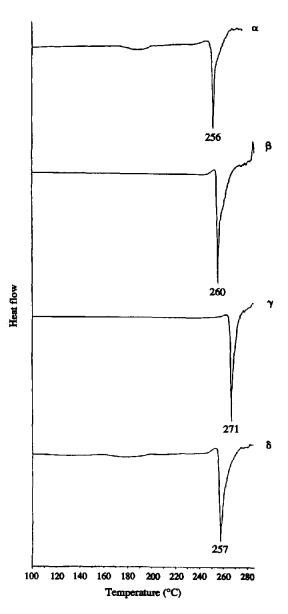


Figure 3 DSC curves of $\alpha\text{-},\,\beta\text{-},\,\gamma\text{-}$ and $\delta\text{-mefloquine hydrochloride.}$

Table 4		
Melting transitions	of mefloquine hy	drochloride forms

Form	α	β	ץ	δ	E	θ
Peak temperatures (°C)	256	260	271	257	268	265

(α	1	β γ δ		γ		δ	e		θ	
d(Å)	(%) <i>I/I_{max}</i>	d(Å)	(%) <i>I</i> //I _{max}	d(Å)	(%) //I _{max}	d(Å)	(%) <i>I</i> //I _{max}	d(Å)	(%) <i>I</i> //I _{max}	d(Å)	(%) <i>I</i> /I _{max}
13.3	(66)	16.8		11.0	(22)	16.9		9.87		17.3	
10.0		12.6	(57)	8.35	(18)	8.9		9.59	(27)	8.65	
9.47	(42)	12.05	(96)	7.38	(9)	8.49		8.78	(28)	7.73	(64)
7.14	-	9.56		6.30	(17)	7.95		6.91	(22)	6.12	(96)
6.9		7.50		5.99		7.72	(36)	5.66		5.49	. ,
<u>6.7</u>	<u>(100)</u>	6.56	(61)	5.76		6.193	<u>(100)</u>	5.50		5.17	
5.97		6.31	. ,	5.41		5.90		4.93	(51)	4.93	(72)
5.72		6.05	(100)	5.22	(11)	5.69	(19)	4.80	(52)	4.65	. ,
5.05	(40)	5.59		4.68	(13)	5.434		4.54		4.15	(67)
4.96	, ,	5.31	(44)	4.56	(15)	5.185		4.42		<u>3.876</u>	<u>(100)</u>
4.74		5.04	(44)	4.50	. ,	4.934	(11)	4.34		3.715	<u> </u>
4.59		4.84	. ,	4.273		4.720		4.12	(40)	3.481	(23)
4.42	(42)	4.75		4.20	(72)	4.588		4.07		3.41	(18)
4.34		4.62		4.07	(59)	4.44	(18)	3.928		3.068	. ,
4.03		4.58		4.02	(47)	4.37	(17)	3.862		2.985	
4.06		4.42	(42)	<u>3.72</u>	<u>(100)</u>	4.24		3.739	(100)	2.748	
3.964		4.22	. ,	3.522	(10)	4.17	(16)	3.700	(50)	2.654	
3.883	(51)	4.07		3.358	` ´	4.00		3.656	. ,	2.404	
3.726	(-)	3.949	(51)	3.095	(13)	3.949	(27)	3.614			
3.575	(85)	3.814	(34)		• /	3.888	v,	3.504			
3.364	()	3.679	(,			3.812	(73)	3.454			
3.247		3.614	(95)			3.752	(26)	3.320			
3.204		3.403	(/			3.623	(,	3.204			
3.052						3.555	(18)				
						3.504	(22)				
						3.458	(16)				

Table 5 The d values and I/I_o relative intensities of mefloquine hydrochloride forms

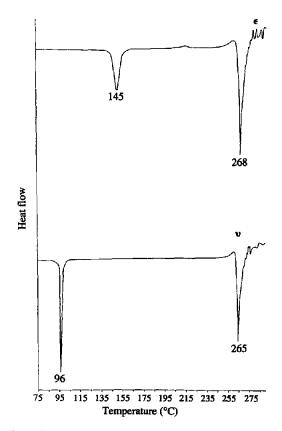


Figure 4 DSC curves of ϵ - and θ -mefloquine hydrochloride.

were recorded. The diffraction curves of the initial and the heat-treated ϵ -solvate showed structural transformations. The diffraction curves of the starting and the heat-treated samples are different and also differ from the curves of the α -, β - and γ -forms, alone and together. This means that the crystal structures of the former modifications are different from the three latter forms.

References

- Solid State Chemistry of Drugs (S.R. Byrn, Ed.), pp. 3-27. Academic Press, New York (1982).
- [2] Pharmaceutical Thermal Analysis (J.L. Ford and P. Timmins, Eds), pp. 130-149. Wiley, New York (1989).
 [2] L. L. Labelian and W. McCane, Pharmaceutical Sciences (1989).
- [3] J.K. Haleblian and W. McCrone, J. Pharm. Sci. 58, 911–929 (1969).
- [4] J.K. Haleblian, J. Pharm. Sci. 64, 1269-1288 (1975).
- [5] Eur. Pat. No.: 137 375 (1984).
- [6] U.S. Pat. No.: 4 507 482 (1985).

[Received for review 21 July 1993; revised manuscript received 18 November 1993]